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Abstract
Decoherence of entanglement of qubits is investigated which is caused by
the phenomenological quantum channel (the Bloch channel) equivalent to the
Bloch equations. It is shown how the decoherence of entanglement depends
on the longitudinal and transverse relaxation times and the equilibrium value
of the qubit. The quantum dense coding system under the influence of the
Bloch channel is also investigated. The Shannon mutual information obtained
by the Bell measurement and the Holevo capacity is calculated. Furthermore,
the microscopic system-reservoir model which yields the Bloch equations is
considered. The result shows that the temperature of the thermal reservoir
significantly affects the decoherence of entanglement.

PACS numbers: 03.67.Hk, 03.67.Mn, 03.67.−a

1. Introduction

Quantum information processing has recently attracted much attention in quantum physics and
information science. It provides the novel information technologies of quantum cryptography,
quantum communication and quantum computation as well as the new insights on the
principles of quantum mechanics [1, 2]. Entanglement between quantum systems is one of
the most important resources in quantum information processing. When quantum information
processing is performed in the real world, decoherence (or a relaxation process) caused by an
external environment (or a thermal reservoir) is inevitable. This is the most serious obstacle
in performing quantum communication and quantum computation with high performance.
Therefore, one of the most important problems is to investigate how the decoherence affects
the entanglement in quantum information processing.

The decoherence can be investigated by means of phenomenological methods, stochastic
methods and microscopic methods [3–10]. In the microscopic approach, the interaction
between the relevant system and the external environment is modelled and the projection

0305-4470/05/194235+11$30.00 © 2005 IOP Publishing Ltd Printed in the UK 4235

http://dx.doi.org/10.1088/0305-4470/38/19/012
http://stacks.iop.org/ja/38/4235


4236 M Ban et al

operator method is applied to eliminate the variables of the external environment. In the
stochastic approach, the effect of the external environment is treated as a stochastic process.
In the phenomenological approach, parameters such as the relaxation times are introduced
for describing the effect of the external environment. The phenomenological approach makes
clear which parameters are essential for the decoherence of the relevant properties since the
phenomenological parameters can be treated as independent variables. A typical example is
the Bloch equations for investigating spin relaxation processes [11, 12]. The Bloch equations
have widely been used for explaining various kinds of experimental data [13, 14]. Although the
Bloch equations are very simple, they provide useful information about relaxation processes.
Therefore the paper investigates the decoherence of entanglement of qubits (spin-1/2 systems)
that is caused by the phenomenological quantum channel which is equivalent to the Bloch
equations.

This paper is organized as follows. In section 2 we derive the quantum channel associated
with the Bloch equations which have phenomenological longitudinal and transverse relaxation
times [11, 12], and investigate the basic properties. The complete positivity of the quantum
channel restricts the values of the relaxation times. In section 3 using the entanglement
of formation, we consider the decoherence of entanglement of qubits caused by the Bloch
channel, and obtain the condition that the Bloch channel becomes an entanglement-breaking
channel [15, 16]. In section 4 we use the result for investigating the transmission of classical
information in the quantum dense coding system of qubits [17–22]. The Holevo capacity
[23, 24] is calculated and compared with the Shannon mutual information obtained by the Bell
measurement. In section 5 we consider the microscopic system-reservoir model that yields the
quantum channel equivalent to the Bloch equations, and obtain the microscopic expressions
of the relaxation times. The temperature dependence of the decoherence of entanglement is
found. In section 6 we give the concluding remarks.

2. Quantum channel associated with the Bloch equations

The Bloch equations proposed for investigating spin relation processes [11, 12] can also
describe the decoherence of qubits, where they can be expressed in terms of the average values
of the Pauli matrices as

d

dt
〈σ̂ x〉t = − 1

T2
〈σ̂ x〉t (1)

d

dt
〈σ̂ y〉t = − 1

T2
〈σ̂ y〉t (2)

d

dt
〈σ̂ z〉t = − 1

T1
(〈σ̂ z〉t − 〈σ̂ z〉eq) (3)

where T1 and T2 are the longitudinal and transverse relaxation times, and 〈σ̂ z〉eq is the
equilibrium value of 〈σ̂ z〉t , namely, 〈σ̂ z〉eq = 〈σ̂ z〉t=∞. In equations (1) and (2), we have
ignored the angular frequency since it is not important for our purpose. Any quantum state
ρ̂(t) of a single qubit subject to the Bloch equations is obtained in the following form:

ρ(t) = 1
2 [1 + ax(t)σ̂ x + ay(t)σ̂ y + az(t)σ̂ z] (4)

where the Bloch vector �a(t) = (ax(t), ay(t), az(t))
T is given by

ax(t) = 〈σ̂ x〉t = e−t/T2〈σ̂ x〉0 (5)

ay(t) = 〈σ̂ y〉t = e−t/T2〈σ̂ y〉0 (6)



Decoherence of entanglement in the Bloch channel 4237

az(t) = 〈σ̂ z〉t = e−t/T1〈σ̂ z〉0 + (1 − e−t/T1)〈σ̂ z〉eq.. (7)

Thus the Bloch equations completely determine the time evolution of any qubit state.
The quantum channel Lt defined by the relation ρ̂(t) = L̂t ρ̂(0), which we refer to as the

Bloch channel, is determined by

L̂t |0〉〈0| = 1
2 (1 + e−t/T1)|0〉〈0| + 1

2 (1 − e−t/T1)|1〉〈1| + 1
2 (1 − e−t/T1)〈σ̂ z〉eq(|0〉〈0| − |1〉〈1|)

(8)

L̂t |1〉〈1| = 1
2 (1 − e−t/T1)|0〉〈0| + 1

2 (1 + e−t/T1)|1〉〈1| + 1
2 (1 − e−t/T1)〈σ̂ z〉eq(|0〉〈0| − |1〉〈1|)

(9)

L̂t |0〉〈1| = e−t/T2 |0〉〈1| (10)

L̂t |1〉〈0| = e−t/T2 |1〉〈0| (11)

where σ̂ z|0〉 = |0〉 and σ̂ z|1〉 = −|1〉. These equations can be derived by substituting
�a(0) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) into the identity ρ̂(t) = L̂t ρ̂(0) with
equations (4)–(7). The Bloch channel can be written in the form of the Pauli channel

L̂t X̂ = p0(t)X̂ +
∑

k=x,y,z

pk(t)σ̂ kX̂σ̂ k (12)

with

p0(t) = 1
4 (1 + 2 e−t/T2 + e−t/T1) + 1

4 (1 − e−t/T1)〈σ̂ z〉eq (13)

pz(t) = 1
4 (1 − 2 e−t/T2 + e−t/T1) + 1

4 (1 − e−t/T1)〈σ̂ z〉eq (14)

px(t) = py(t) = 1
4 (1 − e−t/T1)(1 − 〈σ̂ z〉eq). (15)

In particular, when T1 = T2 and 〈σ̂ z〉eq = 0, the Bloch channel becomes the depolarizing
channel. The quantum master equation (the Lindblad equation) equivalent to the Bloch
equations is given by

∂

∂t
ρ̂(t) = 1 + 〈σ̂ z〉eq

4T1
([σ̂ +, ρ̂(t)σ̂−] + [σ̂ +ρ̂(t), σ̂−]) +

1 − 〈σ̂ z〉eq

4T1
([σ̂−, ρ̂(t)σ̂ +]

+ [σ̂−ρ̂(t), σ̂ +]) +
1

4

(
1

2T1
− 1

T2

)
[σ̂ z, [σ̂ z, ρ̂(t)]]

≡ K̂ρ̂(t) (16)

where the relation L̂t = exp(K̂t) holds.
An any quantum channel must be completely positive [25]. This restricts the values of

the longitudinal and transverse relaxation times T1 and T2. It is found from equations (8)–(11)
that the Bloch channel L̂t is equivalent to the transformation of the Bloch vector

�a(t) = Lt �a(0) + �b(t) (17)

with

Lt =

e−t/T2 0 0

0 e−t/T2 0
0 0 e−t/T1


 (18)

�b(t) =

 0

0
(1 − e−t/T1)〈σ̂ z〉eq


 . (19)
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Then the condition for the Bloch channel L̂t to be completely positive is that the following
inequality should be satisfied for an arbitrary time t [26]:

1 + e−t/T2 � 2 e−t/T2 . (20)

It is seen that this condition is equivalent to having the longitudinal relaxation time T1 and the
transverse relation time T2 satisfy the inequality

2T1 � T2. (21)

Since a completely positive map is positive, this inequality ensures the positivity of the quantum
state ρ̂(t) = L̂t ρ̂(0), that is, | �a(t)| � 1. It is obvious that the relaxation times T1 and T2 in the
Bloch equations derived from the microscopic system-reservoir model satisfy condition (21)
(see section 5).

3. Decoherence of entanglement of formation

To investigate the decoherence of entanglement of qubits that is caused by the Bloch channel
L̂t , we suppose that one of the two qubits in the Bell state |�+〉 = (|00〉 + |11〉)/√2 is sent
through the Bloch channel L̂t . Then the output state ρ̂t of the Bloch channel L̂t becomes

ρ̂t = (L̂t ⊗ Î)|�+〉〈�+|
= 1

4 (1 + 2 e−t/T2 + e−t/T1)|�+〉〈�+| + 1
4 (1 − 2 e−t/T2 + e−t/T1)|�−〉〈�−|

+ 1
4 (1 − e−t/T1)(|�+〉〈�+| + |�−〉〈�−|)

+ 1
4 (1 − e−t/T1)〈σ̂ z〉eq(|�+〉〈�−| + |�+〉〈�−| + {h.c.}) (22)

where |�±〉 = (|00〉 ± |11〉)/√2 and |�±〉 = (|01〉 ± |10〉)/√2 and ‘h.c.’ stands for the
Hermitian conjugate. The Hermitian operator ρ̂ ′

t = (σ̂ y ⊗ σ̂ y)ρ̂
∗(σ̂ y ⊗ σ̂ y) is calculated

to be

ρ̂ ′
t = 1

4 (1 + 2 e−t/T2 + e−t/T1)|�+〉〈�+| + 1
4 (1 − 2 e−t/T2 + e−t/T1)|�−〉〈�−|

+ 1
4 (1 − e−t/T1)(|�+〉〈�+| + |�−〉〈�−|)

− 1
4 (1 − e−t/T1)〈σ̂ z〉eq(|�+〉〈�−| + |�+〉〈�−| + {h.c.}). (23)

The concurrence Ct of the quantum state ρ̂t [27, 28] is given by

Ct = max

[
0, 2 max

1�k�4
λk −

4∑
k=1

λk

]
(24)

where λk (1 � k � 4) is the eigenvalue of the Hermitian matrix R̂ = (
√

ρ̂t ρ̂
′
t

√
ρ̂t )

1/2, which
is equal to the square root of the eigenvalue of ρ̂t ρ̂

′
t . Then we find that

λ1 = 1
4

[√
(1 + e−t/T1)2 − 〈σ̂ z〉2

eq(1 − e−t/T1)2 + 2 e−t/T2

]
(25)

λ2 = 1
4

[√
(1 + e−t/T1)2 − 〈σ̂ z〉2

eq(1 − e−t/T1)2 − 2 e−t/T2

]
(26)

λ3 = 1
4

√
1 − 〈σ̂ z〉2

eq(1 − e−t/T1) (27)

λ4 = 1
4

√
1 − 〈σ̂ z〉2

eq(1 − e−t/T1) (28)

where we have used inequality (21) in deriving the eigenvalue λ2. Hence we obtain the
concurrence Ct of the quantum state ρ̂t

Ct = max
[
0, e−t/T2 − 1

2

√
1 − 〈σ̂ z〉2

eq(1 − e−t/T1)
]
. (29)
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Figure 1. The time evolution of the entanglement of formation of the quantum state ρ̂t under the
influence of the Bloch channel, where (a) T1/T2 = 2.0; 〈σ̂ z〉eq = 0 (dash-dotted line), 〈σ̂ z〉eq = 0.8
(dashed line), 〈σ̂ z〉eq = 0.95 (short-dashed line), 〈σ̂ z〉eq = 0.99 (dotted line), 〈σ̂ z〉eq = 1.0 (solid
line) and (b) T1/T2 = 0.5 (dash-dotted line), T1/T2 = 1.2 (dashed line), T1/T2 = 3.0 (short-
dashed line), T1/T2 = 8.0 (dotted line), T1/T2 = 100.0 (solid line); 〈σ̂ z〉eq = 0.1. The inset
graphs show the concurrence Ct of the quantum state ρ̂t for the same parameters.

The entanglement of formation Et [27–29] is given by

Et = F(Ct ) (30)

with

F(x) = H

(
1 +

√
1 − x2

2

)
(31)

H(x) = −x log2 x − (1 − x) log2(1 − x). (32)

The entanglement of formation Et is plotted as a function of time in figure 1.
The necessary and sufficient condition for the quantum state ρ̂t to be separable is obtained

from equations (29) and (30)√
1 − 〈σ̂ z〉2

eq(1 − e−t/T1) � 2e−t/T2 . (33)

This condition can also be derived from the positivity of the partial transposition of the quantum
state ρ̂t [30, 31]. From equations (29) and (33), we find the following results:

(i) if 〈σ̂ z〉eq = ±1, the quantum state ρ̂t is always entangled for finite time t and the
concurrence Ct decays as Ct = e−t/T2 . In this case the relaxation time of the concurrence
Ct is identical with the transverse relaxation time T2. Note that 〈σ̂ z〉eq = ±1 implies that
the equilibrium state of the qubit is |0〉〈0| or |1〉〈1|;

(ii) if the longitudinal relation time T1 is sufficiently large, the quantum state ρ̂t is always
entangled in the time region of t 
 T1. In this case, the concurrence of the quantum state
ρ̂t is approximated with Ct ≈ e−t/T2 , and thus the relaxation time of concurrence Ct is
equal to the transverse relation time T2;

(iii) if the transverse relaxation time T2 is sufficiently short and 〈σ̂ z〉eq �= ±1, the quantum
state ρ̂t is always separable in the time region of t 
 T2.
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Figure 2. The time t when the quantum state ρ̂t changes from entangled to separable under the
influence of the Bloch channel, where (a) 〈σ̂ z〉eq = 0.0 (dash-dotted line), 〈σ̂ z〉eq = 0.82 (dashed
line), 〈σ̂ z〉eq = 0.94 (short-dashed line), 〈σ̂ z〉eq = 0.98 (dotted line), 〈σ̂ z〉eq = 0.99 (solid line)
and (b) T1/T2 = 0.5 (dash-dotted line), T1/T2 = 2.0 (dashed line), T1/T2 = 5.0 (short-dashed
line), T1/T2 = 12.0 (dotted line), T1/T2 = 30.0 (solid line). The quantum state ρ̂t is separable in
the time region upside of the each graph.

Note that when (L̂t ⊗ I)|�+〉〈�+| becomes separable, the quantum channel L̂t is an
entanglement-breaking channel [15, 16]. Therefore, it is necessary for the Bloch channel L̂t

to be an entanglement-breaking channel that the longitudinal relaxation time T1 takes a finite
value and the equilibrium value of |〈σ̂ z〉t | is less than unity. The time t when the quantum
state ρ̂t changes from entangled to separable under the influence of the Bloch channel or
equivalently when the Bloch channel L̂t becomes an entanglement-breaking channel is shown
in figure 2.

4. Information transmission by means of quantum dense coding

This section investigates the transmission of classical information by means of the quantum
dense coding [17–22] under the influence of the Bloch channel. Considering the entanglement
distillation, a sender (Alice) and a receiver (Bob) can share the Bell state |�+〉 even if a quantum
channel is noisy [32]. Hence we suppose that Alice and Bob share the Bell state |�+〉. Alice
encodes two bits of classical information by applying that of four operators 1̂, σ̂ z, σ̂ x, σ̂ y to
her qubit. Then Alice sends the encoded qubit to Bob through the Bloch channel. After
receiving it, Bob obtains one of the four two-qubit states

ρ̂00 = 1
4 (at + bt )|�+〉〈�+| + 1

4 (at − bt )|�−〉〈�−| + 1
4ct (|�+〉〈�+| + |�−〉〈�−|)

+ 1
4ct 〈σ̂ z〉eq(|�+〉〈�−| + |�+〉〈�−| + {h.c.}) (34)

ρ̂01 = 1
4 (at − bt )|�+〉〈�+| + 1

4 (at + bt )|�−〉〈�−| + 1
4ct (|�+〉〈�+| + |�−〉〈�−|)

+ 1
4ct 〈σ̂ z〉eq(|�+〉〈�−| + |�+〉〈�−| + {h.c.}) (35)

ρ̂10 = 1
4 (at + bt )|�+〉〈�+| + 1

4 (at − b2)|�−〉〈�−| + 1
4ct (|�+〉〈�+| + |�−〉〈�−|)

+ 1
4ct 〈σ̂ z〉eq(|�+〉〈�−| + |�+〉〈�−| + {h.c.}) (36)
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ρ̂11 = 1
4 (at − bt )|�+〉〈�+| + 1

4 (at + bt )|�−〉〈�−| + 1
4ct (|�+〉〈�+| + |�−〉〈�−|)

+ 1
4ct 〈σ̂ z〉eq(|�+〉〈�−| + |�+〉〈�−| + {h.c.}) (37)

where t is the transmission time of the encoded qubit and for the sake of simplicity we set

at = 1 + e−t/T1 (38)
bt = 2e−t/T2 (39)
ct = 1 − e−t/T1 . (40)

Since the Holevo capacity CH of the quantum dense coding system is attained when the prior
probabilities are equal [22], we can obtain the Holevo capacity CH

CH = S


1

4

∑
j,k=0,1

ρ̂jk


 − 1

4

∑
j,k=0,1

S(ρ̂jk)

= − 1

2
(1 + ct 〈σ̂ z〉eq) log2(1 + ct 〈σ̂ z〉eq) − 1

2
(1 − ct 〈σ̂ z〉eq) log2(1 − ct 〈σ̂ z〉eq)

+
1

2
ct log2 ct +

1

4
ct (1 + 〈σ̂ z〉eq) log2(1 + 〈σ̂ z〉eq) +

1

4
ct (1 − 〈σ̂ z〉eq) log2(1 − 〈σ̂ z〉eq)

+
1

4

[
at +

√
b2

t + (ct 〈σ̂ z〉eq)2

]
log2

[
at +

√
b2

t + (ct 〈σ̂ z〉eq)2

]

+
1

4

[
at −

√
b2

t + (ct 〈σ̂ z〉eq)2

]
log2

[
at −

√
b2

t + (ct 〈σ̂ z〉eq)2

]
. (41)

In particular, if 〈σ̂ z〉eq = 0, the Holevo capacity is simplified as

CH|〈σ̂ z〉eq=0 = 1
2ct log2 ct + 1

4 (at + bt ) log2(at + bt ) + 1
4 (at − bt ) log2(at − bt ). (42)

On the other hand, if the longitudinal relaxation times T1 is sufficiently large and the condition
T1 
 t is satisfied, the Holevo capacity is approximated with

CH|T1
t = 1 + 1
2 (1 + e−t/T2) log2(1 + e−t/T2) + 1

2 (1 − e−t/T2) log2(1 − e−t/T2). (43)

When Bob performs the Bell measurement to extract the information encoded by Alice,
the channel matrix [33] of the quantum dense coding system is given by

PBell = 1

4




at + bt at − bt ct ct

at − bt at + bt ct ct

ct ct at + bt at − bt

ct ct at − bt at + bt


 (44)

which does not depend on the equilibrium value 〈σ̂ z〉eq of the qubit. Since the Shannon mutual
information becomes maximum when the prior probabilities are equal [34], the maximum
value of the Shannon mutual information IBell is calculated to be

IBell = 1
2ct log2 ct + 1

4 (at + bt ) log2(at + bt ) + 1
4 (at − bt ) log2(at − bt ). (45)

In particular, if the longitudinal relaxation times T1 are sufficiently large and the condition
T1 
 t is satisfied, the Shannon mutual information IBell is approximated with

IBell|T1
t = 1 + 1
2 (1 + e−t/T2) log2(1 + e−t/T2) + 1

2 (1 − e−t/T2) log2(1 − e−t/T2). (46)

Therefore, from equations (41)–(43), (45) and (46), we obtain the relations

CH � IBell CH|〈σ̂ z〉eq=0 = IBell CH|T1
t = IBell|T1
t . (47)
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Figure 3. The time dependence of the ratio Rt = (CH − IBell)/IBell, where (a) T1/T2 = 2.0;
〈σ̂ z〉eq = 0.5 (dash-dotted line), 〈σ̂ z〉eq = 0.7 (dashed line), 〈σ̂ z〉eq = 0.8 (short-dashed line),
〈σ̂ z〉eq = 0.85 (dotted line), 〈σ̂ z〉eq = 0.9 (solid line) and (b) T1/T2 = 0.5 (dash-dotted
line), T1/T2 = 1.0 (dashed line), T1/T2 = 2.0 (short-dashed line), T1/T2 = 3.5 (dotted line),
T1/T2 = 5.0 (solid line); 〈σ̂ z〉eq = 0.8.

The fact that the Holevo capacity CH is equal to the Shannon mutual information IBell implies
that the quantum coding effect (or equivalently the super-additivity of the mutual information)
[35–37] disappears. The ratio Rt = (CH−IBell)/IBell is plotted as a function of time in figure 3.

5. Microscopic system-reservoir model of the Bloch channel

We now consider the microscopic system-reservoir model of the decoherence that yields the
Bloch channel under certain conditions. The system consists of a single spin of magnitude
1/2, namely, a qubit, and a thermal reservoir which is a set of harmonic oscillators in the
thermal equilibrium with temperature T. The interaction Hamiltonian Ĥ int between the system
and reservoir is assumed to be

Ĥ in = h̄
∑

k

(
gkσ̂ +âk + g∗

k σ̂−â
†
k

)
(48)

where σ̂± = (1/2)(σ̂ x ± iσ̂ y), and âk and â
†
k are the bosonic annihilation and creation operators

of the kth mode, satisfying the canonical commutation relation
[
âk, â

†
l

] = δkl , and gk is the
coupling constant between the system and the reservoir. Applying the time-convolutionless
formalism of the projection operator method [38–40] to eliminate the reservoir variables, we
can obtain the quantum master equation of the qubit state ρ̂(t), up to the second order with
respect to the coupling constant gk , in the interaction picture,

∂

∂t
ρ̂(t) = �∗

+−(t)[σ̂ +, ρ̂(t)σ̂−] + �+−(t)[σ̂ +ρ̂(t), σ̂−]

+ �∗
−+(t)[σ̂−, ρ̂(t)σ̂ +] + �−+(t)[σ̂−ρ̂(t), σ̂ +] (49)

with

�+−(t) =
∑

k

|gk|2
∫ t

0
dτ e−iωτ

〈
â
†
k(τ )âk(0)

〉
R

(50)
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�−+(t) =
∑

k

|gk|2
∫ t

0
dτ eiωτ

〈
âk(τ )â

†
k(0)

〉
R

(51)

where h̄ω is the energy separation between the upper and lower levels |0〉 and |1〉 of the qubit,
and 〈· · ·〉R stands for the average value in the thermal equilibrium of the reservoir. By taking
the Markovian limit (or equivalently the narrowing limit), the functions �+−(t) and �−+(t)

are approximated as

�+−(t) ≈
∑

k

|gk|2
∫ ∞

0
dτ e−iωτ

〈
â
†
k(τ )âk(0)

〉
R

= πD(ω)n̄(ω) − iδ+(ω) (52)

�−+(t) ≈
∑

k

|gk|2
∫ ∞

0
dτ eiωτ

〈
âk(τ )â

†
k(0)

〉
R

= πD(ω)[n̄(ω) + 1] + iδ−(ω) (53)

where the function D(ω) is the spectral density of the system-reservoir coupling and n̄(ω) is
the Bose–Einstein distribution

D(ω) =
∑

k

|gk|2δ(ωk − ω) (54)

n̄(ω) = (eh̄ω/kBT − 1)−1. (55)

Moreover the frequency shifts δ±(ω) are given by

δ+(ω) = P
∫ ∞

0
dω′ 1

ω − ω′ D(ω′)n̄(ω′) (56)

δ−(ω) = P
∫ ∞

0
dω′ 1

ω − ω′ D(ω′)[n̄(ω′) + 1] (57)

where the symbol ‘P’ stands for taking the principal part of the integral. When the frequency
shifts are negligible, we obtain the Markovian master equation for the qubit state [7]
∂

∂t
ρ̂(t) = R↑([σ̂ +, ρ̂(t)σ̂−] + [σ̂ +ρ̂(t), σ̂−]) + R↓([σ̂−, ρ̂(t)σ̂ +] + [σ̂−ρ̂(t), σ̂ +]) (58)

with R↑ = πD(ω)n̄(ω) and R↓ = πD(ω)[n̄(ω) + 1].
Comparing equation (58) with equation (16), we find the microscopic expressions for the

longitudinal relaxation time T1 and the transverse relaxation time T2 and the equilibrium value
w of 〈σ̂ z〉t

T1 = 1

2(R↑ + R↓)
= 1

2πD(ω)[2n̄(ω) + 1]
(59)

T2 = 1

R↑ + R↓
= 1

πD(ω)[2n̄(ω) + 1]
(60)

〈σ̂ z〉eq = R↑ − R↓
R↑ + R↓

= − 1

2n̄(ω) + 1
= −tanh

(
1

2
βh̄ω

)
(61)

where β = 1/kBT with T being the temperature of the thermal reservoir. In this case, the
equality 2T1 = T2 holds in equation (21). Furthermore the longitudinal relaxation time T1 and
the transverse relaxation time T2 can be expressed in terms of the equilibrium value w of 〈σ̂ z〉t

T1 = −Tc〈σ̂ z〉eq T2 = −2Tc〈σ̂ z〉eq (62)
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Figure 4. The dependence of the threshold time Te on the equilibrium value 〈σ̂ z〉eq. The quantum
state ρ̂t is separable (or entangled) in the upper (or lower) time region.

with Tc = 1/2πD(ω). Here it should be noted that the inequality −1 � 〈σ̂ z〉eq � 0
holds. Then the necessary and sufficient condition of the separability of the quantum state
ρ̂t = (L̂t ⊗ Î)|�+〉〈�+| given by equation (33) becomes√

1 − 〈σ̂ z〉2
eq(1 − e−t/Tc |〈σ̂ z〉eq|) � 2e−t/2Tc |〈σ̂ z〉eq|. (63)

Hence the quantum state ρ̂t is separable for t � Te and entangled for t < Te, where the
threshold time Te is given by

Te = 2Tc|〈σ̂ z〉eq| ln




√
2 − 〈σ̂ z〉2

eq + 1√
1 − 〈σ̂ z〉2

eq


 . (64)

It is easy to see that limT →0 Te = ∞ and limT →∞ Te = 0. The result implies that the quantum
state ρ̂t is always entangled when the thermal reservoir is in the vacuum state while it is always
separable when the temperature of the environment is sufficiently high. The threshold time Te

is plotted as a function of w in figure 4. The figure clearly shows that the threshold time Te

rapidly decreases as the temperature T increases.

6. Conclusion

We have investigated the properties of the decoherence of entanglement that is caused by
the phenomenological Bloch channel. We have shown how the decoherence of entanglement
depends on the longitudinal and transverse relaxation times and the equilibrium value of the
qubit. We have obtained the condition that the Bloch channel becomes an entanglement-
breaking channel. Using the results, we have investigated the transmission of classical
information by means of quantum dense coding under the influence of the Bloch channel.
We have calculated the Shannon mutual information by the Bell measurement and the Holevo
capacity of the quantum dense coding system. We have found that the Holevo capacity is
equal to the Shannon mutual information under certain condition. This implies that the super-
additivity of the mutual information (or equivalently the quantum coding effect) in the quantum
dense coding system disappears. Furthermore using the microscopic system-reservoir model,
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we have obtained the microscopic expressions of the longitudinal and transverse relaxation
times and the equilibrium value of the qubit. This result shows that the temperature of the
thermal reservoir significantly affects the decoherence of entanglement.
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